Investigating the Misidentification of Automatic Number Plate Recognition Systems

Taekwan Yoon*, Changyoung Ma
* Smart Transportation, LG CNS, Republic of Korea
tyoon@lgcns.com

Abstract

The aim of this study is to analyze the patterns of an automatic number plate recognition system, AVI (Automatic Vehicle Identification) misidentification errors. ITS performance evaluation results show that the performance level of the equipments becomes lower as they are old. Also, AVI is more suitable for day time traffic data collection than night time because of its visibility. Most errors come from similar shaped letter such as consonant, vowel or number, and different plate types such as old fashioned plate, plate of vehicle kept for business and new model (long-width type) plate types. In the results and discussion part, we talk about these types with figures. In conclusion, it is a necessary to maintain the equipments regularly to assure the ITS reliability.

Keywords: Automatic Number Plate Recognition, Misidentification, Intelligent Transportation System

Introduction

The number plate recognition plays an important role in numerous applications such as making ITS link travel information, parking lots, traffic law enforcement, toll collection and other purposes. In KOREA, number plate recognition is called AVI (Automatic Vehicle Identification). AVI performs as a system which collects the plate number and passing time of vehicles that pass through the spot where the equipment installed. From the data collected by AVI, we can estimate the link travel speed and time by comparing the upstream information (plate number and passing time) with the downstream information.

For effective traffic information of ITS (Intelligent Transportation Systems) the ITS equipments in local site need to be evaluated regularly. MLTM (Ministry of Land, Transport and Maritime Affairs) in KOREA reports the evaluation manual and develops PODES (Portable roadway Detector Evaluation System) which is utilized to evaluate the performance of ITS for evaluation of VDS (Vehicle Detection System) and AVI. There are three phages in this process; technical, pre-completion and regular evaluation. The KICT (Korea Institute of Construction Technology) has an authority which can perform ITS equipments evaluation on the National Highways.

According to the manual, performance level of the equipment has to pass 80% of identification rate of success by PE (Percentage Error).

\[
PE(\%) = \frac{E}{Y} \times 100
\]

E = Misreading and Error in analyzing time interval
Y = Number of sample in analyzing time interval

The reasons of misidentification are weather, characteristics of local sites, time, a manufacturing company and angles of view. Also AVI cannot read damaged plate, plate of army and diplomat vehicle, temporary plate, and bicycle plate. In this study, we exclude these error cases to find errors that come from external factors. Therefore, we only analyze the case of normal plate data and suggest the improvement way to go for effective ITS traffic information collecting.

Figure 1 shows that AVI schematic, vehicles which travel in AVI installation area are taken photos images A and B sites. We can estimate travel time and speed by using two spots data. Suppose that a
Materials and methods

To analyze the types of misidentification, we utilized all data which collected in ITS equipments performance evaluation project which was performed in four regions; Seoul, Busan, Iksan and Wonju RCMA (Regional Construction and Management Administration). Table 1 shows the results of evaluation in the project, and the average of results is approximately 90%. It means that most of equipments passed the test with higher scores, but there is a difference between pre-completion and regular evaluation. The results of pre-completion are higher than those of regular evaluation. From this, we can estimate that the performance level of equipments decreases as the equipment becomes old. Also, we recognize that it is necessary to maintain the system and equipment regularly for effective ITS.

Table 1 Result of evaluation in 2009 ITS equipments performance evaluation project

<table>
<thead>
<tr>
<th></th>
<th>Pre-completion Evaluation</th>
<th>Regular Evaluation</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
</tr>
<tr>
<td>Seoul</td>
<td>94%</td>
<td>92%</td>
<td>89%</td>
</tr>
<tr>
<td>Busan</td>
<td>92%</td>
<td>91%</td>
<td>82%</td>
</tr>
<tr>
<td>Iksan</td>
<td>90%</td>
<td>87%</td>
<td>86%</td>
</tr>
<tr>
<td>Wonju</td>
<td>94%</td>
<td>91%</td>
<td>N/A</td>
</tr>
<tr>
<td>Average</td>
<td>93%</td>
<td>90%</td>
<td>86%</td>
</tr>
</tbody>
</table>

The identification rate of success of day time is high, in comparison with that of night time. The cause of this is AVI characteristic which has more troubles to identify figure and word clearly in dark condition than bright condition.

Results and discussion

From the results of analysis, we can figure out six types of errors in AVI system. Most of them occur because of misreading of shapes which are similar to each other. In U.S. studies, there are some errors such as D and O, I and 7 and A and H. Korean language ‘Hangul’ has two main elements; consonant and vowel. Two elements make one word, for example 오 (consonant) + 되 (vowel) = 오되 (word). Korean plate has figures and words. The figure means vehicle type such as truck, bus and car, region of registration and identification, and words mean the vehicle use such as rent-a-car, personal and business, region of registration and identification. Also, we can classify vehicles according to plate color, for instance vehicles kept for business have orange color and personal vehicles have green color plate.

Similar shaped letter and number errors

Figure 2 shows that the system misread 오.
to 오. The error occurred between consonant ㅁ and ㅇ because two consonants have similar shapes.

Figure 2 Consonant error example

![Figure 2 Consonant error example](image)

We see from Figure 3 the error type in vowel between ㅏ and ㅓ. Because two vowels have similar shape, the system cannot identify exactly. It occurs only one case in sample of this study.

Figure 3 Vowel error example

![Figure 3 Vowel error example](image)

The results of studies which were performed in other countries are quite similar to this result in figure error. (Figure 4)

Figure 4 Figure error example

![Figure 4 Figure error example](image)

Errors from different plate types

The new model of plate has been used since Jan. 1. 2004. The character of this new plate is that there is no words which present region of registration. Due to this change, AVI system misread regional identification like Figure 5. Most of them are read as 0x such as 서울 → 서울 01, 경기 3 → 경기 03 and 경북 7 → 경북 07.

Figure 5 Old fashioned plate error example

![Figure 5 Old fashioned plate error example](image)

The plate of vehicle kept for business should show the region for registration. In this reason, errors occur. From Figure 6, we can see that the 광주(Gwangju) was misread as the 서울(Seoul) although two words are not similar each other.

Figure 6 Plate of vehicle kept for business error example

![Figure 6 Plate of vehicle kept for business error example](image)

New model (long-width type) plate can be a problem in reading by AVI. Figure 7 shows that 4532 was misidentified as 1453. Number 1 is added in front of the figures of plate in most cases, and last digit of plate could not be read by AVI.

Figure 7 New model (long-width type) plate error example

![Figure 7 New model (long-width type) plate error example](image)

Conclusion

So far, we have seen results of evaluation and error types of AVI system in Korea. The identification rates of success of pre-completion evaluation and day time are higher than those of regular evaluation and night time. In here, I would like to state the following two reasons. First, the performance level of equipment decrease as the equipment becomes old. Second, the AVI in day time can identify figure and word of plate more exactly.
than night time. Also, we can classify the misidentification types as two; similar shaped letter or number and different types of number plate.

To get more reliable traffic information, it is necessary to maintain ITS equipments steadily. It is also important to provide more accurate information for users who need and use traffic information for their travel.

References

Author Bibliography
Taekwan Yoon
Taekwan got Ph.D. in Civil Engineering from the University of Tennessee, Knoxville, USA and works at LG CNS as a specialist.
Email: tyoon@lgcns.com

Changyoung Ma
Changyoung got Master’s degree from Kyungju University and works at Korea Transportation Safety Authority as a researcher.
Email: a140032@ts2020.kr