Guoping Wang  
Department of Engineering, Indiana University Purdue University Fort Wayne, Fort Wayne, Indiana  
wang@ipfw.edu  

Abstracts

Direct digital synthesizers (DDS), or numerically controlled oscillators (NCO), are important components in many digital communication systems, such as digital radios and modems, software-defined radios, digital down/up converters for cellular and PCS base stations, etc. A common method for digitally generating a complex or real valued sinusoid employs a lookup table scheme. In this paper, a variable system clock technique and variable module counter based on current FPGA clock management technology is proposed for NCO implementation. The proposed design is implemented on Xilinx Virtex 5 FPGA and the simulation result demonstrates significant improvement in reducing the Spurious Free Dynamic Range (SFDR).

Keyword: Direct Digital Synthesizer, SFDR, FPGA, Clock Management Module.

Introduction

Direct digital synthesizers (DDS), or numerically controlled oscillators (NCO), are important components in many digital communication systems, such as digital radios and modems, software-defined radios (SDR), digital down/up converters for cellular and PCS base stations, etc. Quadrature synthesizers are used for constructing digital down and up converters, demodulators, and implementing various types of modulation schemes, including PSK (phase shift keying), FSK frequency shift keying), and MSK (minimum shift keying). A common method for digitally generating a complex or real valued sinusoid employs a lookup table scheme. The lookup table stores samples of a sinusoid. A digital integrator is used to generate a suitable phase argument that is mapped by the lookup table to the desired output waveform. For example, in a FM radio with digital IF system as shown in Figure 1, the RF received signal from antenna is converted into digital signal and then it is modulated and converted into Intermediate Frequency by mixing with the sinusoid and cosine digital signals from an NCO. The IF signal can be processed in the band of intermediate frequency.

Some advantages of an DDS advantages are:

- Micro-Hertz tuning resolution of the output frequency and sub-degree phase tuning capability, all under complete digital control.
- Extremely fast hopping speed in tuning output frequency (or phase), phase-continuous frequency hops with no over/undershoot or analog-related loop settling time anomalies.
- The DDS digital architecture eliminates the need for the manual system tuning and tweaking associated with component aging and temperature drift in analog synthesizer solutions.
- The digital control interface of the DDS architecture facilitates an environment where systems can be remotely controlled, and minutely optimized, under processor control.

Figure 1. FM Radio with Digital IF
When utilized as a quadrature synthesizer, DDS afford unparalleled matching and control of I and Q synthesized outputs.

For the direct digital frequency synthesis, two types of architecture have been developed in the past: ROM based and ROM-less. The ROM-based DDFS uses a look-up table to convert the phase information into the sinusoid and cosine magnitude. It was first proposed in 1987 [1], and some of the modified architectures [2] are modified Sunderland architecture, modified Nicholas architecture, Taylor series expansion, and CORDIC-based algorithm.

ROM-based DDFS has a simple structure and generate fast frequency signal output. It uses a ROM to convert the phase accumulation information into an amplitude value such as sinusoid and cosine values. It usually can achieve very high-speed output signals. ROM-less architectures manage to remove completely the ROM and the phase-to-amplitude conversion is conducted using interpolation algorithms [3]. These ROM-less architectures can achieve a good performance when the synthesized frequency is relatively low compared to the sampling frequency.

In this paper, a ROM-based DDFS architecture with an improvement of SFDR is proposed using the current FPGA technology. This paper is organized as follows, in Section II, the basic ROM-based DDFS is described and the main challenges of DDFS design are discussed. In Section III, the proposed DDFS architecture is presented. Implementation and simulation results on Xilinx FPGAs are also discussed by comparing with other approaches. Finally, Section IV concludes this paper with a summary.

Overview of ROM-based DDFS
A. DDFS Architecture
Direct digital synthesis is a technique for using digital logic blocks to generate an output signal, such as sinusoid and cosine with various frequency with reference to a fixed-frequency clock source, that is, the reference clock frequency is scaled down to a programmable frequency signal. The output signal waveform can be any kind of waveform, while sinusoid and cosine are the most popular ones. The implementation of DDFS is divided into two distinct parts as shown in Figure 2: a discrete-time phase accumulator and a phase-to-amplitude converter outputting the desired sinusoid and cosine signal. In the ROM-based architecture, the conversion is done by a look-up-table (LUT). The D/A converter and filter can be skipped in a pure-digital NCO environment such as software-defined radio.

Assuming that the LUT has \( N = 2^n \) entries, when \( n \) is the number of address bits generated by the phase accumulator. The precision of the LUT is \( L \) bits and this parameter is completely independent of \( n \). The step size, \( \mu \), determines how quickly the phase address is accumulated, and hence the frequency of the generated sinusoid/cosine wave. The step size, \( \mu \), can be derived from Equation (1).

Let
- \( N \): the number of entries of the LUT
- \( f_s \): the system sampling frequency
- \( f_d \): the desired frequency of generated sine waveform

![Figure 2. Simplified Diagram of Direct Digital Synthesis](http://www.ijesrt.com)
then, we have
\[ \mu = N \frac{f_s}{\nu} \]  
(1)

For example, giving the LUT size of \( N = 2^n = 256 \)
, the sampling frequency \( N = 2^n = 256 \) and the desired frequency is 2.4 MHz, the resulting phase accumulator step size is
\[ \mu = 256 \times \frac{2.4MHz}{10MHz} = 61.44. \]

The phase accumulator includes a fractional part, which is not used when referencing the LUT, but which allows frequency control to be achieved. In that case, the step size is a fixed-point number, comprising \( n \) whole bits to address the LUT and \( b \) fractional bits, as shown in Figure 2.

According to Equation (2), if the step size quantization is too coarse (i.e., large \( \mu \)), the frequency which is actually realized may suffer a large frequency error. The number of fractional bits in the accumulator should therefore be chosen according to the maximum acceptable frequency error, the frequency resolution \( \Delta f_a \) is derived as described in Equation (2).

\[ \Delta f_a = \Delta \mu \frac{f_s}{N} = \frac{f_s}{2^n N} \]  
(2)

**B. Quantization Effects**

Quantization occurs on both the phase accumulation and on the LUT amplitude quantization.

**C. Phase Quantization**

The phase accumulator is increased by step size \( \mu \) with \( n \) whole bits and \( b \) fractional bits, however, to keep a relatively small size ROM, the \( b \) fractional bits are not used with only \( n \) whole bits are used to index the LUT. Unfortunately, this phase truncation introduces a phase noise and produces unwanted spurious spectral component in the DDFS output signals, and thus degrades the spectral purity of the synthesized sine waveform, one example as shown in Figure 3. The Spurious Free Dynamic Range (SFDR) is the difference between the spectral peak and the highest spur, as it can be approximated by [4].

\[ SFDR = 6.02 \times 2^n + 3.92 \text{ dB} \]  
(3)

**D. Amplitude Quantization**

The output of the phase-to-amplitude LUT has limited precision, \( L \) bits. This amplitude quantization results in a signal-to-noise ratio, usually approximated [5] by:
\[ SNR = 6.02 \times +1.76L \]  
(4)

This SNR limits the performance of the output signal, as its spectrum has a noise floor due to rounding error of the LUT table. This causes a further degradation to the ideal sine wave output, which can be observed in both the time domain and the frequency domain. LUT resolution and depth are therefore the key factors influencing unwanted spectral components. From the results in [4], we can now mainly focus on the SFDR.
instead of SNR of a DDFS to improve the output spectrum purity.

E. SFDR Improving

One way to improve SFDR is to increase the phase accumulator whole bits $n$, and hence the size of the LUT table. However, for higher values of $n$, the memory size become impractical. Some approaches are investigated to compress the ROM-size [2], which we will not discuss in further details in this paper.

Many techniques can be used to improve SFDR of an DDFS. In this section, we describe mainly two popular methods 1) phase-dithering, 2) Taylor series approximation. Both techniques are used in the latest Xilinx FPGA DDS logic box [6].

F. Phase Dithering

Dithering is a technique often used in digital audio whereby a very low level of noise is added to a signal in order to improve the psychoacoustically perceived sound by decorrelating the quantized signal and the quantization noise. The addition of dithering noise to a signal actually reduces the SNR (more noise is being added to the original signal). The overall signal reproduction is likely to be (psychoacoustically) improved by breaking up the correlation between the various signal components and quantization error. Without dithering the quantization noise will be perceived as harmonic or tonal distortion [7].

To improve SFDR of DDFS, a random noise can be added to phase accumulator $b$ fractional bits, as shown in Figure 4. The added random noise breaks up the regularity of the phase truncation error.

G. Taylor Series Corrected DDS

The phase dithered DDS, as well as the phase truncation DDS, have a phase quantizer that produces a lower precision by discarding the fractional component of the high precision. The reason for this quantization step is to keep the size of the lookup memory to a reasonable size. The trade-off is spectral purity. According to Equation (3), the SFDR (in dB unit) is proportional to the bit width of indexing the LUT, that is, if more fractional bits are used to index the lookup memory (LUT), then SFDR can be improved proportionally. The Taylor series corrected DDS method is to use the previously discarded fractional bits to calculate corrections that can be added to the LUT values to produce outputs with very high SFDR [8].

According to Taylor series expansion, $\sin(\theta)$ can be represented by equation near value $a$,

$$
\sin(x) = \sin(a) + \cos(a)(x-a) - \frac{\sin(a)}{2}(x-a)^2 + ...
$$

(5)

The DDFS output can be corrected using the first-term Taylor series or second-term Taylor series by using extra multipliers.

Proposed Approach to Improve SFDR

SFDR exists in the look-up table(LUT) based NCO implementation due to the discard of phase accumulator fractional parts, and only the integer parts of the phase accumulator are used to index the sinusoid and cosine LUTs. For example, Figure 5 shows the power spectrum with step size $\mu = 1, 2, \text{ and } 3$ for...
$f_s = 16MHz, N = 16, f_a = 1MHz, 2MHz, 3MHz$.

In these examples, because the step size is integer and there are no fractional parts in the phase accumulator, no SFDRs exist for the generated sinusoidal signals.

![Figure 5. NCO Spectrum with Integer Step Size](image1)

If we change the step size to $\mu = 1.7$, since fractional parts do exist in the phase accumulator and they are discarded when used to index LUTs. In this case, we can see significant spurious components. This is explained from the power spectrum with step size $\mu = 1.7$ in Figure 6.

![Figure 6. NCO Spectrum with Fractional Step Size](image2)

From Equation (1), we have $\mu = N \frac{f_d}{f_s}$. In a traditional LUT-based NCO, for a given required signal frequency $f_d$, $f_s$ is the system clock frequency and it can't be changed. $N$ is the number of entries for the LUT and usually $N = 2^n$, where $n$ is the integer bit width of phase accumulator, and $\mu$ usually is derived with both integer and fractional parts. In this paper, based on the advancement of current FPGA technology, an approach is proposed to generate the phase accumulator with only integer step size $\mu$ for the some required signals.

A. Variable Clock Frequency

With the current FPGA technology, it is very easy to obtain a variable system clock that can be used for NCO. We'll use Xilinx Virtex 5 as an example for illustration.
In the Xilinx Virtex-5 family, the Clock Management Tiles (CMTs) provide very flexible, high performance clocking [9]. Each CMT contains two Digital Clock Managers (DCMs) and one Phase-Locked Loop (PLL). The Digital Clock Managers (DCMs) as shown in Figure 7 in Virtex-5 FPGAs provide a wide range of powerful clock management features:

**Figure 7. Digital Clock Manager**

(1) **Clock Deskew**
The DCM contains a delay-locked loop (DLL) to completely eliminate clock distribution delays, by deskewing the DCM's output clocks with respect to the input clock. The DLL contains delay elements (individual small buffers) and control logic. The incoming clock drives a chain of delay elements, thus the output of every delay element represents a version of the incoming clock delayed at a different point. The control logic contains a phase detector and a delay-line selector. The phase detector compares the incoming clock signal (CLKIN) against a feedback input (CLKFB) and steers the delay line selector, essentially adding delay to the output of DCM until the CLKIN and CLKFB coincide.

(2) **Frequency Synthesis**
Separate outputs provide a doubled frequency (CLK2X and CLK2X180). Another output, CLKDV, provides a frequency that is a specified fraction of the input frequency. Two other outputs, CLKFX and CLKFX180, provide an output frequency derived from the input clock by simultaneous frequency division and multiplication. The user can specify any integer multiplier (M) and divisor (D) within the range specified in the DCM Timing Parameters section of the Virtex-5 FPGA Data Sheet. An internal calculator determines the appropriate tap selection, to make the output edge coincide with the input clock whenever mathematically possible. For example, M=9 and D=3, multiply the frequency by 1.8, and the output rising edge is coincident with the input rising edge after every fifth input period, or after every ninth output period.

(3) **Phase Shifting**
The DCM allows coarse and fine-grained phase shifting. The coarse phase shifting uses the 90°, 180°, and 270° phases of CLK0 to make CLK90, CLK180, and CLK270 clock outputs. The 180° phase of CLK2X and CLKFX provide the respective CLK2X180 and CLKFX180 clock outputs.

(4) **Dynamic Reconfiguration**
There is a bus connection to the DCM to change DCM attributes without reconfiguring the rest of the device. For more information, see the Dynamic Reconfiguration chapter of the Virtex-5 FPGA Configuration Guide. The DADDR[6:0], DI[15:0], DWE, DEN, DCLK inputs and DO[15:0], and DRDY outputs are available to dynamically reconfigure select DCM functions. With dynamic reconfiguration, DCM attributes can be changed to select a multiply (M) or divide (D) from the currently configured settings. For a given clock input CLKIN, the DCM can provide a divided output clock -- CLKDV and a synthesized output clock -- CLKFX.

Frequency Divide Output Clock -- CLKDV: The CLKDV output clock provides a clock that is phase aligned to CLK0 with a frequency that is a fraction of the effective CLKIN frequency. The fraction is determined by the CLKDV_DIVIDE attribute. The source clock frequency CLKIN is divided by the value of this attribute. The possible values for CLKDV_DIVIDE are: 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, or 16.
Frequency-Synthesis Output Clock -- CLKFX: The CLKFX output clock provides a clock with the following frequency definition:

\[ CLKF\_freq = \frac{M}{D} \times CLKIN\_freq \]  

(9)

In this equation, M is the multiplier (numerator) with a value defined by the CLKFX\_MULTIPLY attribute. D is the divisor (denominator) with a value defined by the CLKFX\_DIVIDE attribute. Specifications for M and D, as well as input and output frequency ranges for the frequency synthesizer, are provided in the Virtex-5 FPGA Data Sheet [9]. The rising edge of CLKFX output is phase aligned to the rising edges of CLK0, CLK2X, and CLKDV. When M and D to have no common factor, the alignment occurs only once every D cycles of CLK0. The possible values for M are any integer from two to 33. The possible values for D are any integer from 1 to 32.

B. Variable Module Accumulator

Instead of using a fixed module of \(2^n\) accumulator, a variable module N accumulator can be implemented in the NCO with a little extra hardware. Figure 8 shows such an accumulator.

C. Implementation and Simulation

With a variable clock and module N accumulator, a step size with only integer part can achieved for some desired frequencies. We'll use two examples for illustration.

**Example 1**: Assuming that \(f_s = 100\text{MHz}, f_d = 300\text{KHz}, N = 256\), then the step size is given by Equation (1).

\[ \mu = N \frac{f_d}{f_s} = 256 \times \frac{300 \times 10^3}{10^6} = 0.768 \]

However, if we divide \(f_s\) by the factor 10 and let \(N=200\), then it results in an integer step size:

\[ \mu = N \frac{f_d}{f_s} = 200 \times \frac{300 \times 10^3}{10^7} = 6 \]

**Example 2**: Assuming that \(f_s = 100\text{MHz}, f_d = 290\text{KHz}\), we can let \(N = 2000, M = 29, D = 10\), then

\[ f_{\text{clkin}} = f_s \times \frac{M}{D} = 290\text{MHz} \]

\[ \mu = N \frac{f_d}{f_s} = 2000 \times \frac{290 \times 10^3}{290 \times 10^6} = 2 \]

With the proposed approach, both examples 1 and 2 are realized using VHDL on Xilinx Virtex 5 XC5VLX50T, package: FF1136, speed: -1 and the designs are simulated with Modelsim simulator to verify the correctness of their functionalities. The simulated sinusoid waveforms are shown as Figure 9 and Figure 10. From these figures, it clearly demonstrates that the proposed approach can provide a cleaner and purer sine waveform.
The sine outputs are also analyzed using FFT in Matlab and the spectrum can be seen in Figure 11 and Figure 12 for examples 1 and 2. From these two figures, it clearly demonstrates that the proposed approach can generate a sinusoid waveform without any spurious components for these two examples.
Summary

Direct digital synthesizers (DDS), or numerically controlled oscillators (NCO), are important components in many digital communication systems, such as digital radios and modems, software-defined radios, digital down/up converters for cellular and PCS base stations, etc. A common method for digitally generating a complex or real valued sinusoid employs a lookup table scheme. In this paper, a variable system clock technique and variable module accumulator based on current FPGA clock management technology is proposed for NCO implementation. The proposed design is implemented on Xilinx Virtex 5 FPGA and the simulation result demonstrates a spur-free sinusoid waveform can be generated for certain frequencies.

References


http://www.ijesrt.com
