This paper presents a mathematical model for the variation of the axial rigidity of the main shaft in a CNC machine tool. It analyzes the main parameters on which the axial rigidity of the shaft depend and the way they influence the stability of functioning.

KEYWORDS: Principal shaft; axial rigidity; parameters; stability.

INTRODUCTION

The modern technological working conditions impose a series of structural changes of the main components of a CNC machine tool. One of these is referring to the construction and functioning of the main axle, which must possess an appropriate technological rigidity, in order to obtain dimensional precision and quality of the superior surface. [1]

In this regards, one must know the initial working conditions in stationary mode. Thus, for a fixed shaft, we have [2, 3]:

\[
\begin{align*}
F_l &= F_e = F \\
\alpha_l &= \alpha_e = \alpha
\end{align*}
\]

(1)

![Figure 1. Technological elements of construction for the idle bearing](image)

It is considered a benchmark attached to the exterior ring (fixed) with the origin in the center of the processing arch of the exterior ring, T_e, and longitudinal axe T_\text{ex} and radial axis T_\text{ey} (figure 1). [5,6]
We have:
\(R_{Te0} \) = the processing range of the exterior ring;
\(R_{Ti0} \) = the processing range of the interior ring;
The \(T_i \) position of the center of the interior ring from the stated benchmark will have the following coordinates:

\[
\begin{align*}
X_{Ti} &= (R_{Te0} + R_{Ti0} - 2r) \sin \alpha \\
Y_{Ti} &= (R_{Te0} + R_{Ti0} - 2r) \cos \alpha
\end{align*}
\]

ANALYSIS OF THE AXIAL RIGIDITY. ESTABLISHING A MATHEMATICAL MODEL FOR THE SIMULATION.

In dynamic mode, the bearing’s vibrations will produce relative movements between the interior and the exterior rings. It is considered a movement of the interior ring equal to \(u_1 \). This is equivalent to a displacement of the interior ring center along \(T_x \) axis with a distance equal to \(u_1 \). The \(T_i \) point will become \(T_i' \) point, which has the following coordinates:

\[
\begin{align*}
X_{Ti'} &= X_{Ti} + u_1 = (R_{Te0} \cdot R_{Ti0} - 2r) \sin \alpha + u_1 \\
Y_{Ti'} &= Y_{Ti} = (R_{Te0} + R_{Ti0} - 2r) \cos \alpha
\end{align*}
\]

This will produce a displacement of the bead (of its center), its deformation and the runways deformation. We can write:

\[
\begin{align*}
X_{Ti'} &= (R_e - r) \sin \alpha + (R_i - r) \sin \alpha_i \\
Y_{Ti'} &= (R_e - r) \cos \alpha + (R_i - r) \cos \alpha_i
\end{align*}
\]

By making simplifications, we have:

\[
\alpha_i = \alpha + \phi_i \\
\alpha_e = \alpha + \phi_e
\]

The rings deformation will be produced under \(F_e \) and \(F_i \) forces action; these forces are calculated using the following relations, based on the Hertzian contact theory:
The rigidity F variation, first of all, we will study the effect of the bearing rotation movement.

For this, we must solve the system (5) for an $u_1=0$ movement. We will have the solutions:

$$\varphi_i = -\frac{2(R_{T_{i0}}-r)tg\alpha}{R_{i0}^2-R_{e0}} \quad \varphi_e = \frac{2(R_{T_{e0}}-r)tg\alpha}{R_{i0}^2-R_{e0}}$$

$$\Delta_i = -\frac{D\Omega^2\cos\alpha}{2k} \quad \Delta_e = \frac{D\Omega^2\cos\alpha}{2k}$$

Where: $D = m_b|R_{T_{e0}} \cdot r\cos\alpha|B^2$

By introducing a longitudinal displacement u_i, the bead will continuously deform the rings, with the shifts $\Delta_i \to \Delta_i + \Delta_{i,t}$ and $\Delta_e \to \Delta_e + \Delta_{e,t}$, while the rotations are $\varphi_i \to \varphi_i + \varphi_{i,t}$ and $\varphi_e \to \varphi_e + \varphi_{e,t}$.

The system becomes:

$$\begin{cases}
\sin\alpha\Delta_i' + \sin\alpha\Delta_e' + (R_{T_{i0}} - \Delta_i - r)\cos\alpha\varphi_i' + (R_{T_{e0}} + \Delta_e - r)\cos\alpha\varphi_e' = u_1 \\
\cos\alpha\Delta_i' + \cos\alpha\Delta_e' - (R_{T_{i0}} - \Delta_i - r)\sin\alpha\varphi_i' - (R_{T_{e0}} + \Delta_e - r)\sin\alpha\varphi_e' = 0 \\
k(\sin\alpha + \varphi_e\cos\alpha)\Delta_i' - k(\sin\alpha + \varphi_e\cos\alpha)\Delta_e' + F\cos\alpha\varphi_i' + F\cos\alpha\varphi_e' = 0 \\
k(\cos\alpha - \varphi_i\sin\alpha)\Delta_i' - k(\cos\alpha + \varphi_e\sin\alpha)\Delta_e' - F\sin\alpha\varphi_i' - F\sin\alpha\varphi_e' = 0
\end{cases}$$

This is a linear system with the unknown $\Delta_i, \Delta_e, \varphi_i, \varphi_e$, where:

$$\Delta_i' = \frac{m_1}{m}; \quad \Delta_e' = \frac{m_2}{m}; \quad \varphi_i' = \frac{m_3}{m}; \quad \varphi_e' = \frac{m_4}{m}$$

Also, the axial force, which determines the u_1 displacement, is calculated using eq. (12):

$$F_{ax} = \frac{n-k\cdot\Delta_i'(\sin\alpha + (\varphi_i + \varphi_{i,t})\cos\alpha)}{m\cdot u_1(\sin\alpha + (\varphi_i + \varphi_{i,t})\cos\alpha)}$$

And the rigidity

$$k_{11} = \frac{\delta F_{ax}}{\delta u_1}$$

$$u_1 = \begin{bmatrix}
\sin\alpha & (R_{T_{i0}} + \Delta_i - r)\cos\alpha & (R_{T_{e0}} + \Delta_e - r)\cos\alpha \\
0 & -(R_{T_{i0}} + \Delta_i - r)\sin\alpha & -(R_{T_{e0}} + \Delta_e - r)\sin\alpha \\
-k(\sin\alpha + \varphi_e\cos\alpha) & F\cos\alpha & F\cos\alpha \\
0 & -k(\cos\alpha - \varphi_e\sin\alpha) & -F\sin\alpha & -F\sin\alpha
\end{bmatrix}$$
We have:

\[k_{11} = M + 2 \cdot N \cdot u_1 \]

\[M = n \cdot k \cdot \frac{d_1}{m} (\sin \alpha + \varphi_i \cos \alpha) \]

\[N = n \cdot k \cdot \frac{d_1 \cdot d_3}{m^2} \cdot \cos \alpha \]

\[k_{11} = \sqrt{M^2 + 4NF_{ax}} \]

\[m = 2kF \left[\frac{R_{T_{10}} - R_{T_{e0}}}{k} \cdot m_b (R_{T_{e0}} - r \cos \alpha) \cdot \frac{(R_e - 2r \cos \alpha - d)^2}{4 \cdot (R_e - r \cos \alpha - d)^2} \right] \]

\[d_1 = k \cdot F_{sina} \left[\frac{R_{T_{10}} - R_{T_{e0}}}{k} \cdot m_b (R_{T_{e0}} - r \cos \alpha) \cdot \frac{(R_e - 2r \cos \alpha - d)^2}{4 \cdot (R_e - r \cos \alpha - d)^2} \right] \]

\[d_3 = 2kF \cdot cosa + 2k^2 \sin \alpha \cdot tga \cdot \left[\frac{R_{T_{10}} - R_{T_{e0}}}{k} \cdot m_b (R_{T_{e0}} - r \cos \alpha) \cdot \frac{(R_e - 2r \cos \alpha - d)^2}{4 \cdot (R_e - r \cos \alpha - d)^2} \right] \]

By calculating \(M \) and \(N \), we have:

\[C_1 = \frac{nksin2\alpha}{F} \cdot [F \cdot cossina + ksina \cdot tga \cdot (R_{T_{e0}} - r)] \]

\[C_2 = \frac{nksin2\alpha}{F} \cdot \frac{\sin^2 \alpha \cdot (R_{T_{e0}} - 2r \cos \alpha)^2}{R_{T_{e0}} - r \cos \alpha} \]

\[C_3 = \frac{m_b \cdot cossina}{4k} \cdot \frac{(R_{T_{e0}} - 2r \cos \alpha)^2}{R_{T_{e0}} - r \cos \alpha} \]

\[k_{11} = \sqrt{M^2 + 4 \cdot \frac{C_1 + C_2 \cdot \Omega^2}{-C_3 \cdot \Omega^2} \cdot F_{ax}} \]
\[A_1 = \frac{4c_1}{c_3}; A_2 = \frac{4c_2}{c_3} \]

\[k_{11} = \sqrt{M^2 - \left(\frac{A_1}{\Omega^2} + A_2 \right) \cdot F_{ax}} \]

(16)

For the purpose of establishing a mathematical model for the simulation, it is considered the expression of the dynamic accommodation base load at the rolling contact, which is given by the relation:

\[Q_C = A \cdot \left[\frac{D_R D_{Ci,e}}{D_w (D_{Ci,e} - D_R)} \right]^{0.41} \cdot \frac{(1 \pm \gamma)^{1.39}}{(12\gamma)^{1/3}} \cdot \left(\frac{\gamma}{\cos \alpha} \right)^{0.3} \cdot D_w^{1.8} \cdot Z^{-1/3} \]

(17)

Where:

- \(Q_C \) = the basis dynamic load at the rolling contact, for bearings with contact point [N];
- \(A \) = material constant = 100;
- \(D_R \) = the double of the curvature radius of the rolling body in the area of contact with the rolling track;
- \(D_{Ci,e} \) = the diameter of the rolling track of the interior/exterior ring;
- \(D_w \) = the diameter of the rolling body;

[4, 6, 7, 8]

The simulation was done using MATLAB MathWorks for two typo dimensions of angular contact bearings with beads. The constructive dimensions are given in Table 1 [6].

<p>| Table 1. The constructive dimensions used in the mathematical simulation of the models; |
|---|---|---|---|---|---|---|---|---|</p>
<table>
<thead>
<tr>
<th>d (mm)</th>
<th>A</th>
<th>(D_R) (mm)</th>
<th>(D_{Ci}) (mm)</th>
<th>(D_w) (mm)</th>
<th>(\gamma)</th>
<th>(d_m) (mm)</th>
<th>(\alpha)</th>
<th>(Y)</th>
<th>(Q_C) (N)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>100</td>
<td>10,16</td>
<td>46</td>
<td>7,94</td>
<td>0,142</td>
<td>53,94</td>
<td>15</td>
<td>1</td>
<td>3298,68</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
<td>8,62</td>
<td>31</td>
<td>6,75</td>
<td>0,159</td>
<td>41</td>
<td>15</td>
<td>1</td>
<td>2650,97</td>
<td>14</td>
</tr>
</tbody>
</table>

The resulting mathematical models for each case are given by the following expressions:

\[k_{11} = \sqrt{18438 - \left(\frac{7265104,8}{\Omega^2} + 1403,39 \right) F_{ax}} \]

\[k_{11} = \sqrt{7377,766 - \left(\frac{3450741}{\Omega^2} + 1046,956 \right) F_{ax}} \]

(18)

The simulations were done by varying the definition domain of the two parameters \(n_\Omega = 15100 \div 19000 \) r/m and \(F_{ax} = 1\cdot10 \) (N), corresponding to the results obtained by direct measurements. The results are shown in Figure 3.
CONCLUSION

1) The simulations were made for materials for processing like steel, cast iron and bronze;
2) The range of the interior grinding spindle angular speed corresponds to the direct experimental measurement ranges:

 \[n_{w_1} = \frac{15100 \text{ rpm}}{m} \quad n_{w_2} = \frac{17500 \text{ rpm}}{m} \quad n_{w_3} = \frac{19000 \text{ rpm}}{m} \]

3) The spindle’s final load range corresponds to the direct experimental measurement ranges:

 \[F_{ax \text{ steel}} = 0 \div 10 \text{ (N)} \quad F_{ax \text{ cast iron}} = 1 \div 4 \text{ (N)} \quad F_{ax \text{ bronze}} = 1 \div 6 \text{ (N)} \]
4) In both cases one can observe a decrease of the axial rigidity with the increase of the final load, with a higher gradient for the real model than the one obtained after the simulation;

5) The axial rigidity remains constant or varies very little with the variation of the angular speed of the interior grinding spindle axis.

REFERENCES

AUTHOR BIBLIOGRAPHY
Daniel Popescu
Associate Proffesor at University of Craiova, Faculty of Mechanics;
Competence domains: machine tool design, designing machinery for deformation processing, special machinery, industrial logistics, flexible systems for processing, integrated systems for fabrication.

Roxana-Cristina Popescu
Engineer at “Horia Hulubei” National Institute of Physics and Nuclear Engineering, Department of Life and Environmental Science; Master Student at Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science;
Competence domains: nanomaterials, biomaterials, in vitro and in vivo materials testing, stress analysis, computational stress analysis and modeling.